import pandas as pd01 - NGS collection [human]
1 Kagawa et al., 2022 [GSE177616]
KAGAWA_URL='https://ftp.ncbi.nlm.nih.gov/geo/series/GSE177nnn/GSE177616/matrix/GSE177616_series_matrix.txt.gz'
kagawa_metadata = pd.read_table(KAGAWA_URL, skiprows=16, nrows=1, index_col = 0).Tkagawa_gsm = pd.DataFrame({'GSM': kagawa_metadata.index.values[0].split(' ')})kagawa_gsm| GSM | |
|---|---|
| 0 | GSM5375527 |
| 1 | GSM5375528 |
| 2 | GSM5375529 |
| 3 | GSM5375530 |
| 4 | GSM5375531 |
| ... | ... |
| 2711 | GSM5378537 |
| 2712 | GSM5378538 |
| 2713 | GSM5378539 |
| 2714 | GSM5378540 |
| 2715 |
2716 rows × 1 columns
kagawa_gsm.to_csv("../pipeline/fetchngs/human_GSE177616.txt", index=None,header=None)sh ~/Brickman/helper-scripts/nf-core_tower.sh \
Kagawa_2022 \
nextflow run nf-core/fetchngs \
-r 1.10.0 \
--input /projects/dan1/data/Brickman/projects/proks-salehin-et-al-2023/pipeline/fetchngs/human_GSE177616.txtnf-core_tower.sh Meistermann_2021 nextflow run brickmanlab/scrnaseq \
-r feature/smartseq \
-c /projects/dan1/data/Brickman/projects/proks-salehin-et-al-2023/pipeline/smartseq.human.config \
--input /scratch/Brickman/pipelines/Meistermann_2021/results/samplesheet/samplesheet.csv